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Target strength model inputs including morphometry, material properties, lipid composition, and in situ 

orientations were measured for sub-Arctic krill (Euphausia pacifica, Thysanoessa spinifera, T. inermis, 10 

and T. raschii) in the eastern Bering Sea (2016) and Gulf of Alaska (2017). Inter-species and -regional 

animal lengths were significantly different (F1,680 = 114.10, p < 0.01), while animal shape was 

consistent for all species measured. The polar lipid phosphatidycholine was the dominant lipid, 

comprising 86% ± 16% (mean ± standard deviation) and 56% ± 22% of total lipid mass in Gulf of 

Alaska and eastern Bering Sea krill, respectively. Krill density contrasts varied by species and region 15 

rather than with morphometry, lipid composition, or local chla fluorescence. Mean in situ krill 

orientation was 1° ± 31°, with 25% of observed krill within ± 5° of broadside incidence. Modeled 

target strength sensitivity was frequency independent for variations in material properties, but was 

primarily sensitive to morphometry and orientation at lower (38 kHz) and higher (200 kHz) 

frequencies, respectively. Measured variability in material properties corresponded to an order of 20 

magnitude difference in acoustic estimates of biomass at 120 kHz. These results provide important 

inputs and constraints for acoustic scattering models of ecologically-important sub-Arctic krill species. 
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Introduction 

 

Euphausiids (i.e., krill) are a keystone species in the Gulf of Alaska (GOA) and eastern Bering Sea 

(EBS) ecosystems, supporting commercially important fishes such as walleye pollock (Gadus 

chalcogrammus; Buckley et al., 2016), Pacific cod (Gadus macrocephalus; Farley Jr. et al., 2016), and 30 

both marine mammals and seabirds (Aydin and Mueter, 2007; Hunt et al., 2016). Traditionally krill 

(primarily Thysaneossa spp.) in these ecosystems are surveyed via net trawls (Hunt et al., 2016), yet 

these capture methods are likely to underestimate krill densities (Sameoto et al., 1993; Wiebe et al., 

2013) due to net avoidance (Sameoto et al., 2000), mesh size and subsequent escapement, spatially 

patchy distribution of aggregations (Mauchline, 1980), and diel variability (Simard and Sourisseau, 35 

2009). Active acoustic surveys provide an attractive alternative sampling method with fine-scale 

information on krill abundance and distribution over large geographic areas and extended time periods 

(Simmonds and MacLennan, 2005; Reiss et al., 2008), but are known to over- or under-estimate krill 

abundance relative to net sampling (Warren and Wiebe, 2008) and be subject to the inherent uncertainty 

in the acoustic properties of the animals (Hunt et al., 2016). 40 

 

Spatiotemporal distributions of EBS and GOA krill abundance and biomass are currently measured 

using acoustic-trawl surveys (Honkalehto et al., 2009; Ressler et al., 2012) and stereo camera 

deployments (Levine et al., 2018). Target strength (TS, dB re 1 m2), which represents the acoustic 

backscattering cross-section of an individual organism, a necessary variable for converting acoustic 45 

backscatter measurements into estimates of animal numerical density, and indirectly abundance and 

biomass (Simmonds and MacLennan, 2005). TS is a function of the transmitted acoustic frequency, 

ambient sound speed of seawater, body morphology, behavior (e.g., orientation in the water column, 

body curvature and flexure), and material properties (Stanton et al., 1998; Stanton and Chu, 2000; 

Lawson et al., 2006). Krill TS can be estimated using theoretical scattering models, such as distorted 50 



wave Born approximation (DWBA) and other variants (Chu et al., 1993; Stanton et al., 1998, Demer 

and Conti, 2003; Jones et al., 2009), and in situ backscatter measurements (Lawson et al., 2006). 

Appropriate model parameterization will improve both the precision and accuracy of krill 

multifrequency classification (Holliday, 1977; Ressler et al., 2012) and abundance/biomass estimates 

(Simmonds and MacLennan, 2005). 55 

 

The majority of krill TS models rely on parameter inputs that include a) measurements of different 

species reported in the literature (e.g., Foote, 1990; McQuinn et al., 2013; Jech et al., 2017); b) 

empirical, laboratory measurements collected from refrigerated samples (Greenlaw and Johnson, 1982; 

Køgeler et al., 1987); or c) shipboard measurements (Chu and Wiebe, 2005; Smith et al., 2010; Sakinan 60 

et al., 2019) from (in some cases) live animals. Previous surveys measured many of these parameters 

for northeastern Pacific (Becker and Warren, 2014) and sub-Arctic krill (Smith et al., 2010), with the 

latter used to parameterize and produce a theoretical TS model for EBS krill (Ressler et al., 2012; 

Smith et al., 2013). Modeled TS for EBS krill were sensitive to observed variability in parameter inputs 

(Ressler et al., 2012; Smith et al., 2013). For example, the assumed difference in broadside and 65 

perpendicular (relative to the sea surface) in situ orientations of krill can shift theoretical TS as much as 

40 dB at frequencies in the geometric scattering region (McGehee et al., 1998; Smith et al., 2013); 

some models may thus be overly sensitive to changes in orientation thereby underestimating target 

strength (Demer and Conti, 2003). Similarly, small variations in material properties (~2-4%) can yield 

substantial changes in theoretical TS at certain frequencies (e.g., up to 20 dB, Chu and Stanton, 2000). 70 

Consequently, the uncertainty in different parameter estimates and how each propagates to differences 

in TS model outputs needs to be better understood. 

 

Changes in food availability and possible differences in animal lipid content has been hypothesized as 

an explanation for previous observations of spatial variability in EBS krill material properties (Smith et 75 



al., 2010). Recent analyses of krill lipid composition show a possible relationship between lipid 

composition and energy storage for T. raschii (Pleuthner et al., 2016). The complex lipid distribution 

observed within krill are likely a function of nutrition, reproductive stage, and feeding history. Seasonal 

inter- and intra-species differences in lipids among North Atlantic sub-Arctic krill (Cabrol et al., 2019) 

may explain some of the spatiotemporal signals observed in material properties for other krill 80 

(McQuinn et al., 2013). Furthermore, the heterogeneous distribution of lipids throughout the body 

suggest that the standard model assumption of homogeneity in material properties requires validation 

(Jech et al., 2015). Despite these potential considerations, the relationship between material properties, 

lipid amount and type, and acoustic scattering has not been well-studied for crustaceans (Yayanos et 

al., 1978; Knutsen et al., 2001). An exception is Sakinan et al. (2019) who recently incorporated lipid 85 

content into a TS model for the copepod Calanus finmarchicus. 

 

This study measured species- and location-specific material properties, morphometry, lipid composition 

and in situ behaviors of live, or recently expired, krill. The effect of observed parameter variability on 

modeled TS was also evaluated using simulations at standard scientific echosounder frequencies (i.e., 90 

38, 70, 120, and 200 kHz). We conclude by considering sources of uncertainty and providing 

suggestions for future applications of this parameterized TS model, including suggested parameter 

distributions that are relevant for surveys of EBS and GOA krill stocks, as well as those in other 

ecosystems. 

 95 

Methods 

 

Overall survey design 

 

Sampling and shipboard experiments were conducted aboard the NOAA Ship Oscar Dyson during 100 



portions of pollock acoustic-trawl surveys in the EBS (13 June to 03 July 2016; Honkalehto et al., 

2018) and GOA (30 July to 16 August 2017; Jones et al., 2019). Krill were captured in near-surface 

day- and nighttime Methot trawls (max depth = 278 m, mean depth = 124 ± 51 m) with a 5 m2 mouth 

area, 3 mm x 2 mm mesh in the body, and 1 mm mesh in the codend (Methot, 1986) from 31 stations 

(Figure 1). Daily Conductivity-Temperature-Depth (CTD) vertical profiles were conducted to collect 105 

environmental data and the closest measurements in time were assigned to each Methot tow. The catch 

was washed from the codend of the trawl into a large tub for sorting. A sub-sample from each trawl 

catch of at least 25 living krill was selected for further morphometric (i.e., shape, length, mass), 

taxonomic (i.e., species), and material property measurements. Live krill were maintained in multiple 

small (4 L), aerated aquaria in a temperature controlled (2-4 ºC) environment if they were not 110 

processed immediately. Stereo camera deployments occurred at 24 stations which were used to estimate 

in situ orientation of krill (Levine et al., 2018). All statistical comparisons were made using R 4.0.1 (R 

Development Core Team, 2020) and related visualization and support packages (Fox and Weisberg, 

2019; Wickham et al., 2019). General statistical comparisons were made using Type-II ANOVAs and 

Welch’s t-test (ɑ = 0.05).  115 

 

Figure 1. Krill were collected from 19 EBS (dots) and 11 GOA (squares) unique sites via Methot tows. 

Stereo camera deployments (hollow diamonds) occurred at 11 EBS and 13 GOA stations, although 



some casts were done near one another. Bathymetric data were imported from NOAA (Amante and 

Eakins, 2009) using the marmap R-package (Pante and Simon-Bouhet, 2013). 120 

 

Animal morphometry 

 

All animals were digitally photographed to measure animal shape and size. Individual krill were laid 

out on sorting trays as straight as possible to capture lateral (left-side of animal) images. These 125 

specimens were then photographed (with an Olympus TG-3 digital camera using the built-in macro 

mode, f:5.5 to 18.0 mm, shooting range: 0.01 to 0.10 m) with a reference scale included in the image. 

Animals were then re-arranged on the tray to capture the dorsal (top-down) view. The images were 

processed using a custom MATLAB (R2018a, v. 9.4) program where the user generated an along-body 

line by clicking on the anterior of the eye and posterior of the sixth abdominal segment, which 130 

represents Standard Length 2 (SL2, mm; Mauchline, 1980) that is commonly used in TS modeling 

(Lawson et al., 2006). Perpendicular lines at 16 equidistant points were then generated; the user 

selected the intersection of these lines and the body to capture the height/width of the animal by 

converting the number of pixels to mm using the reference ruler as a calibration (Figure 2). Shapes 

were then normalized by dividing SL2 of each animal from their respective along-body (0 to 1) and 135 

height (-1 to 1) axes. SL1 length (anterior of the eye stalk to the posterior end of the telson and 

uropods; Mauchline, 1980) was also measured to produce a SL2-SL1 linear regression and for other 

comparisons with literature values. Lastly, a linear regression was used to assess the log-linear  

relationship between SL2 and mass (mg).  

 140 



Figure 2. Animal shapes were measured from individual krill at 16 equidistant points along the animal’s 

body. The red line represents a 1 mm calibration line, the yellow dots and orange lines represent the 

two-dimensional equidistant points used to approximate the discretized cylinders that parameterize TS 

models, and the yellow line represents the overall lateral two-dimensional shape of the animal. 
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Material properties 

 

Animals were anesthetized using sodium bicarbonate tablets or recently (< 20 minutes) expired prior to 

any material property measurements being made. Animal density (ρanimal, g ml-1) was measured using 

the titration method (Warren and Smith, 2007) where a high-density solution was created using 150 

measured volumes of glycerin (ρ = 1.173 g ml-1) and seawater in a temperature-controlled room at 2-

4ºC. Salinity of the seawater was recorded before measurements were conducted. This solution was 

then added to a beaker containing one or more animals and a known volume of ambient seawater. Once 

the animal became neutrally-buoyant, the volumes of both fluids in the beaker and the temperature of 

the beaker solution were recorded. Seawater density (ρsw) was calculated using the marelac package in 155 

R (Soetart and Petzoldt, 2018) to estimate the density contrast (g = ρanimal / ρsw) of krill (n = 272 and 

325 in 2016 and 2017, respectively). 



 

The time-travel difference method (Chu and Wiebe, 2005; Smith et al., 2010) was used to estimate the 

bulk sound speed contrast (h) of captured krill samples. Measurements (n = 250 pings) were made in a 160 

77 mL PVC t-tube with two 192 kHz bronze single-beam, narrowband transducers (Lowrance TH-NB),  

clamped at each end to create a water-tight seal. A signal generator (Beckman Industrial), wideband 

power amplifier (Krohn-hite 7500), and digitizing oscilloscope (Picotech 5000 series) were used to 

generate a continuous wave (CW) at 192 kHz with a peak-to-peak amplitude of 2V and pulse duration 

of 5 μs. The salinity and temperature of ambient seawater collected from the ship’s flow-through 165 

seawater system were measured at the start and end of the measurements (csw, Soetaert and Petzoldt, 

2018). Krill were rinsed, sieved, and gently patted with a paper towel to reduce any excess water 

content. These organisms were then placed into the t-tube; seawater was added to fill the remaining t-

tube volume. All waveforms were processed using the SciPy library (Jones et al., 2001) in Python 3.7.1 

(Python Software Foundation, https://www.python.org/). A band-pass filter was applied to remove 170 

transient and impulsive noise. A peak detector was then used to determine the time-of-arrival for the 

transmitted waveform for both the empty and animal-filled measurements. 

 

Does lipid composition vary with species and location? 

 175 

After krill material property were completed, individual animals were placed in 5 and 7 ml cryovials 

and frozen at -80 °C. Samples were kept frozen during transportation to a shore-based laboratory for 

lipid analysis. Both wet and dry weights of previously frozen krill were measured and animals 

lyophilized prior to lipid extraction. Total lipid extraction (TLE) was conducted using microwave-

assisted solvent extraction (2:1 DCM:MeOH MARS 5 system) following the methods described by 180 

Harvey et al. (2012). Once extracted, intact lipid class structural analysis was conducted using Reverse 

Phase Liquid Chromatography-Mass Spectrometry (RP LC-MS). Lipid extracts were separated using 

https://www.python.org/


an Agilent 1290 ultra-high performance liquid chromatography (UHPLC) system (C18 Eclipse 

Column) with structural identification via LTQ XL Orbitrap Mass Spectrometer (Thermo Scientific) 

LC-MS methods described by Bird et al. (2011) were followed with some modifications made to the 185 

mass spectrometry protocol to accommodate different instrumentation and calibration. Separated lipids 

initially entered the Fourier-transform Mass Spectrometer (FTMS, Orbitrap) and were detected in 

profile mode (60,000 scan rate in Normal mode). Subsequent collision-induced dissociation 

fragmentation (to MS2 or MS3) took place in the Ion Trap Mass Spectrometer (ITMS) with data 

collection in centroid mode. Dynamic exclusion was employed at a frequency of 30s with decreasing 190 

amounts of time as the fragmentation progressed from MS2 to MS3. All samples were run in both 

positive and negative electrospray ionization modes in order to best detect the range of lipid classes that 

could be present. To determine if the acoustic experimental measurements performed on krill caused 

changes in their lipid content, lipids were also measured for a control group of ‘pristine’ krill which 

were frozen immediately after being sorted from the net haul. 195 

 

Does lipid content, fluorescence, or length affect krill density? 

 

Food availability (i.e., phytoplankton) was characterized by using chla fluorescence (mg m-3) as a proxy 

(Kolber and Falkowski, 1993), which was measured by a Wet Labs ECO-AFL/FL fluorometer from 200 

each CTD profile to investigate the potential relationship between g and feeding status (Smith et al., 

2010). Fluorescence measurements were averaged in 1 m vertical bins and four different metrics were 

calculated: maximum fluorescence (Fmax), integrated fluorescence over entire water column (Fint), 

fluorescence measured at the mixed layer depth (Fmld), and integrated fluorescence from the surface to 

the mixed layer depth (Fmldint). 205 

 



A linear mixed model (LMM, Bates et al., 2015) was used to assess the effects on g of TLE, length, 

fluorescence, mass, species, region, and body condition. Species, region, and condition were treated as 

random effects. Since the four species were not all present within each region, species was nested by 

region. Similarly, TLE was grouped by body condition. Mass, length, fluorescence, TLE, and all 210 

interactions were treated as fixed effects. Since there were substantially different sample sizes for 

paired measurements of g, TLE, length, mass, and fluorescence, four models were assessed: 1) lipid (g 

~ TLE, length, mass, fluorescence), 2) mass-fluorescence-length (g ~ length, mass, fluorescence), 3) 

fluorescence-length (g ~ length, fluorescence), and 4) length (g ~ length). Separate iterations of each 

model were also run using each of the four different fluorescence metrics and were compared using the 215 

root-mean square error (RMSE) for each model. The goodness-of-fit for each model was assessed using 

marginal R2 for fixed effects (or R2
M) and the total conditional R2 (or R2

C) with random effects included 

(Nakagawa and Schielzeth, 2013). 

 

How does in situ orientation of krill vary?  220 

 

In-situ estimates of orientation (relative to the surface) of individual krill in the water column were 

measured using two stereo camera systems and Sebastes Image Analysis software (Levine et al., 2018; 

Williams et al., 2016b). There are different frames of reference to describe the orientation of an 

acoustic target. Stereo camera measurements of krill orientation, θanimal, use the tilt of an animal’s body 225 

relative to the sea surface, where -π/2 and π/2 represent the anterior (head) and posterior (telson) of the 

krill facing exactly away from (i.e., head-down) and towards (i.e., head-up) a theoretical hull-mounted 

transducer, respectively. Once the camera was deployed to depth, the orientations of the first 100 

unique animals were recorded. This process was completed for each of the 27 camera deployments. 

Orientation measurements were corrected for the roll and pitch of the camera following the procedures 230 

outlined in Levine et al. (2018).  



 

Although orientations are typically reported as normal distributions in the literature (Kils, 1981; 

Lawson et al., 2006; Kubilius et al., 2015; Levine et al., 2018), the underlying data are bounded by [-

π/2, π/2] and therefore must be handled differently to appropriately deal with values that approach the 235 

distribution’s boundaries (Landler et al., 2018). Therefore, the von Mises distribution, fvM(θanimal ∈  [-

π/2, π/2) | μ, κ) or equivalent fvM(θanimal ∈  [-90°, 90°) | μ, κ), was used to describe in situ krill 

orientation, which is an approximation of the wrapped normal distribution, fWN(θanimal ∈  [-π/2, π/2) | μ, 

σ), that has been used for Antarctic krill TS modeling (e.g., Bestley et al., 2017). The von Mises 

distribution comprises two parameters that represent the measure of location (μ) and concentration (κ) 240 

and approaches a normal distribution, N(μ=μ, σ2=κ-1), whereby as κ approaches infinity. Mean and 

standard deviation values describing orientation were evaluated using the circular R-package 

(Agostinelli and Lund, 2017). A two-sample Kolmogorov-Smirnov test was then used to compare 

differences in the distribution of daytime and nighttime camera deployments.  

 245 

How sensitive are TS models to measured variability of parameter inputs? 

 

The DWBA model (Chu et al., 1993) for a deformed cylinder was used to assess the sensitivity of TS 

to measured distributions for each parameter. This model integrates the acoustic backscatter over the 

volume of the animal, which is broken up into N (n = 15) number of discrete cylindrical disks: 250 

 

f bs j
(θ model)=

k1

4
∫(γ κ−γ ρ )e

−2 i k⃗2 r⃗ 0a j J 1
(2k2 a jcosβ tilt)

cosβ tilt

d r⃗0

 (Equation 1),  

f bs(θ model )=∑
j=1

N

f bs j
(θ model )

 (Equation 2), 



where θmodel (θmodel = θanimal + π/2) is the orientation of the incident soundwave relative to the target’s 

body where π/2 and 3π/2 radians are considered to be broadside, i is the imaginary unit (√−1 ), J1 is 255 

the Bessel function of the first kind of order 1, k1 and k2 represent the acoustic wavenumber in the 

ambient seawater and the animal’s body respectively, aj is the radius of the jth cylindrical disk along 

the body, βtilt is the tilt angle of the jth cylindrical disk, and r0 is the position matrix that represents the 

x, y, and z coordinates of the animal shape (m). The material property parameter (M, Smith et al., 2010) 

represents |γκ - γρ| where: 260 

M=|γ κ−γ ρ|=| 1

gh
2
+

1

g−2|
 (Equation 3). 

This is then converted to TS via: 

TS=20log10(|f bs(θ model)|)  (Equation 4). 

 

Combined uncertainty in fbs (which is analogous to σbs) given variability in parameter measurements 265 

was estimated using Monte Carlo methods by randomly drawing model input values from normal 

distributions (n = 10,000) of maximum carapace radius, θmodel, and M. These inputs parameterized the 

DWBA (Equations 1 and 2) at standard scientific echosounder frequencies (i.e., 38, 70, 120, and 200 

kHz) using a mean animal shape (non-curved).. Coefficients of variation of the mean (CVSE: standard 

error of fbs divided by mean fbs, sometimes known as the relative standard error) were calculated to 270 

estimate how the combined uncertainty from parameter inputs propagated into the precision of 

estimates of mean fbs. Mean CVSE and the standard error of the mean were also calculated to test the 

effect of sample size (i.e., n = 100 and 1,000) by resampling (without replacement) from the original 

10,000 samples for a total of 1,000 bootstrapped replicates. The more standard coefficient of variation 

(CV: standard deviation of fbs divided by mean fbs) was also estimated to assess how the variability in 275 



parameter distributions affected the relative dispersion and uncertainty of modeled fbs. Models were 

generated using the acousticTS R-package (Lucca, 2020). 

 

A local sensitivity analysis was performed to estimate gradients in fbs with respect to small 

perturbations in radius, length, θmodel, and M (i.e., g and h). Gradients were calculated using Forward 280 

Mode Automatic Differentiation (FMAD), which decomposes a function into a series of differentiable 

operations (e.g., “+”) and calculates the partial derivative with respect to each parameter that are then 

summed via the chain rule (Baydin et al., 2018). The algorithm was initialized using mean parameter 

values. In order to directly compare local sensitivity to each parameter, gradients were scaled to 

dimensionless values to represent the relative sensitivity (RS), sometimes referred to as ‘elasticity’ or 285 

‘proportional sensitivity’ in the literature:  

RS=
∂ f bs

∂ X

X1

f bs
1  (Equation 5), 

where ∂fbs/∂X is the change in fbs with respect to the parameter vector X, X1 is the vector of mean 

parameter values, and fbs1 is modeled fbs given X1. This metric represents the proportional change in fbs 

given a 1% increase in each parameter. Both the ForwardDiff Julia (Revels et al., 2016) and JuliaCall R 290 

(Li, 2019) packages were used for this analysis. The relative influence of shape was evaluated by 

calculating gradients using individual body shapes of all krill, which were then resampled with 

replacement (n = 1,000) to construct bootstrapped 80% confidence intervals. A tapered cylinder from 

previous EBS measurements (Smith et al., 2012) and a generic krill shape (McGehee et al., 1998) were 

also included for additional comparisons. Lastly, TS at 120 kHz and biomass estimates generated using 295 

this study’s M distribution were compared to hypothetical calculations from other material property 

measurements in the literature. Normal and uniform distributions of g and h (n = 10,000) were 

simulated depending on whether a mean ± standard deviation or minimum and maximum were 

reported, respectively.  



 300 

Due to the relative complexity of how sound scatters, the position and magnitude of theoretical nulls at 

higher frequencies may not represent realistic backscatter from an individual target. These frequencies, 

which are typically in the geometric scattering region, are especially sensitive to changes in orientation, 

thereby possibly artificially skewing TS distributions. A stochastic phase variability term, φ (radians), 

was included in the model to mitigate these uncertainties to produce a stochastic DWBA (SDWBA; 305 

Demer and Conti, 2003) that is a variation of Equation 2. This SDWBA was run in parallel to 

investigate how reducing the effects of off-broadside incidence influences simulated TS: 

f bs(θ model )=∑
j=1

N

f bs j
(θ model )e

iϕ j

 (Equation 6),  

where φj is drawn from the normal distribution N(0, σφ) (Demer and Conti, 2003). Both σφ and the 

number of body cylinders were adjusted with increasing frequencies to account for the change in ratio 310 

between spatial resolution and wavelength (Conti and Demer, 2006). Consequently, reference krill 

parameters (L0 = 17.9 mm, N = 15 cylinders, f0 = 120 kHz) corresponded to σφ0 = 0.31 when compared 

against the σφ = 0.71 reported by Conti and Demer (2006) for a 38.35 mm krill with 14 cylinders at 120 

kHz. Although the number of cylinders increased with frequency (N = 15 to 47), N = 15 was set as the 

minimum regardless of frequency. 315 

 

Results 

 

Animal morphometry 

 320 

Species used for this analysis differed between the EBS (T. inermis, T. raschii, and T. spinifera) and 

GOA (T. inermis, T. spinifera, and E. pacifica) habitats. GOA krill (18.9 ± 4.1 mm, n = 413) were 

significantly larger than in the EBS (16.7 ± 2.3 mm, n = 273; t667.4 = -8.99, p < 0.01, Figure 3). Mean 



length also significantly differed among krill species both between (F1,681 = 88.9, p < 0.01) and within 

(F1,680 = 114.10, p < 0.01) geographic regions. Post hoc pairwise comparisons indicated that mean 325 

length of T. spinifera (19.6 ± 4.2, n = 298), E. pacifica (18.0 ± 1.6 mm, n = 166), T. inermis (14.8 ± 2.4, 

n = 99), and T. raschii (16.9 ± 2.5, n = 123) were all significantly different. Among GOA krill, mean 

length was significantly greater (p < 0.05) for T. spinifera (20.6 ± 4.3 mm, n = 215) than T. inermis 

(11.9 ± 0.6 mm, n = 32) and E. pacifica. Conversely, there were no significant differences in mean 

length among any of the EBS krill species. When comparing differences between each region, GOA T. 330 

spinifera and EBS T. inermis (16.1 ± 1.6 mm, n = 67) were significantly larger than EBS T. spinifera 

(17.0 ± 2.3 mm, n = 83) and GOA T. inermis, respectively. 

 

Figure 3. Krill SL2 length (mm) varied within and among species between the 2016 EBS eastern 

Bering Sea (EBS, left) and 2017 Gulf of Alaska (GOA, right) field seasons. EBS krill showed similar 335 

length estimates while there was high variability among GOA krill species. The extent of each box and 

whisker represents the interquartile range (IQR) and the 95th percentile confidence interval, 

respectively. The horizontal black line represents the mean length for each region. The shaded area 

represents the 95th percentile confidence interval of length for each region. 
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When normalized to the length of each animal, inter-species shape was consistent with the highest 

amount of variability observed around the carapace (i.e., 0.0 to ~ 0.1 normalized length, or up to 10% 

of maximum length, Figure 4). The linear relationship between SL1 and SL2 varied among species and 

between regions (Table 1) but were comparable to the relationship reported by Lawson et al. (2006) 

and primarily represent the telson length. There was also a significant positive linear relationship 345 

between SL2 and mass for all species, although only GOA T. spinifera was relatively strong (R2
adj. = 

0.74). 

Figure 4. Normalized animal shapes extracted from photographs of the lateral views from the four 

captured krill species (T. inermis, T. raschii, T. spinifera, and E. pacifica) showed similar variability in 

body shape. Animal lengths were scaled to a [0, 1] distribution. Heights were scaled to the maximum 350 

length of each animal and centered around y = 0. Vertical bars represent mean scaled height ± 1 

standard deviation. 

 

Table 1. Regression relationships between SL2 and SL1 length (mm; SL2 = βSL1(SL1) + β0 + ε) and 

SL2 length and mass (mg; log10(Mass) = log10(β0) + βSL2log10(SL2) + ε) showed both inter- and intra-355 



species differences. Estimates of βSL1 and βSL2 represent the slope coefficients (± standard error), β0 

represents the intercept coefficient, R2
adj. represents the adjusted R2 goodness-of-fit, n is the sample 

size, and σcorr is the correction factor that accounts for back-transformation bias when predicting linear 

mass via 10.5*σ(residual), where σ(residual) represents the model residual variance.



 360 

 SL2 = βSL1(SL1) + β0 + ε log10(M) = log10(β0) + βSL2log10(SL2) + ε 

Species Region βSL1 β0 R2
adj. n βSL2 β0 R2

adj. n σcorr 

E. pacifica GOA 0.84 ± 0.02 -0.18± 0.02 0.95 166 3.07 ± 0.54 -2.16 ± 0.67 0.28 83 1.05 

T. inermis GOA 0.82 ± 0.05 0.50 ± 0.05 0.89 32 N/A N/A N/A 2 N/A 

T. inermis EBS 0.78 ± 0.03 1.38 ± 0.04 0.89 67 3.22 ± 1.94 -2.33 ± 2.34 0.07 23 1.16 

T. spinifera GOA 0.85 ± 0.01 -0.24 ± 0.01 0.99 215 3.49 ± 0.21 -2.52 ± 0.28 0.74 96 1.06 

T. spinifera EBS 0.85 ± 0.03 -0.24 ± 0.01 0.93 83 3.12 ± 1.16 -2.14 ± 1.40 0.26 19 1.04 

T. raschii EBS 0.82 ± 0.02 0.45 ± 0.02 0.95 123 2.69 ± 0.75 -1.70 ± 0.75 0.24 38 1.10 

All species GOA 0.85 ± 0.01 0.51 ± 0.27 0.99 413 3.67 ± 0.19 -2.83 ± 0.25 0.23 181 1.07 

EBS 0.82 ± 0.01 -0.20 ± 0.10 0.93 273 2.91 ± 0.63 -1.95 ± 0.75 0.28 80 1.10 

All species 0.84 ± 0.01 0.07 ± 0.10 0.98 686 3.65 ± 0.18 -2.81 ±0.22 0.61 261 1.07 

 

Material properties 

 

Mean GOA density contrast (1.021 ± 0.006, n = 263) was significantly greater than in EBS krill (1.018 

± 0.006, n = 272; t525.3 = -6.96, p < 0.01). Significant differences among species (F3,529 = 14.9, p < 0.01) 365 

and the interaction of species and regions (F1,529 = 77.7, p < 0.01) demonstrated relatively large 

variability in distributions of both inter- and intra-species g (Figure 5). Specifically, pairwise 

differences in mean g measured for E. pacifica (1.023 ± 0.005, n = 104), T. inermis (1.017 ± 0.006, n = 

100), T. raschii (1.018 ± 0.005, n = 123), and T. spinifera (1.020 ± 0.006, n = 208) were all statistically 

significant. Within GOA, E. pacifica were denser than T. spinifera (1.019 ± 0.006, n = 126; p < 0.01), 370 

but not T. inermis (1.023 ± 0.005, n = 33; p = 0.99). GOA T. inermis were significantly denser than 

their EBS counterparts (1.013 ±0.003, n = 67; p < 0.01), while EBS T. spinifera (1.021 ± 0.005, n = 82) 

were denser than GOA T. spinifera (p < 0.01). GOA h-measurements were significantly greater and less 



variable (1.037 ± 0.011 n = 23) than in the EBS (1.022 ± 0.018, n = 13; t17.09 = -2.75, p = 0.01). 

Overall, the mean h for all measurements made in this study was 1.032 ± 0.015 (n = 36). Both the 375 

region-specific and overall distributions of h were dissimilar from what was previously reported in the 

EBS (1.005 ± 0.008, Smith et al., 2010). 

Figure 5. Animal density contrast (g) varied within and among species of krill between the 2016 

eastern Bering Sea (EBS, left) and 2017 Gulf of Alaska (GOA, right) field seasons. Animals with 

higher estimates of g would produce larger TS estimates, assuming all other variables were held 380 

constant. Mean g in both regions (solid black line) were more similar to previously reported values in 

the EBS for sub-Arctic krill (black-gray dashed line, principally Thysanoessa spp., Smith et al., 2010) 

than values for Antarctic krill (black dotted line, E. superba, Foote, 1990). The extent of each box and 

whisker represents the interquartile range (IQR) and the 95th percentile confidence interval, 

respectively. The shaded area represents the 95th percentile confidence interval of g for each region.  385 

 

Does lipid composition vary with species and location? 

 

Intact phospholipids were the major lipid class observed across all animals with phosphatidylcholine 



(PC) comprising up to 97% (by mass) of total lipids of individuals with an overall mean of 71% ± 25% 390 

(Figure 6). PC was highest for all four species with means of 95% ± 2%, 72% ± 20%, 53% ± 17%, and 

51% ± 24% in E. pacifica, T. spinifera, T. inermis, and T. raschii, respectively. There was a strong 

regional difference in lipid composition where PC comprised mean of 86% ± 16% and 56% ± 22% in 

GOA and EBS krill, respectively. Unlike GOA krill, EBS krill contained also had large contributions 

from triglycerols (TAG) (27% ± 19%) and lysophosphatidylcholine (LPC) (6% ± 8%). Aside from E. 395 

pacifica, TAG made up the second largest proportion of lipids for GOA T. spinifera (9% ± 8%), EBS T. 

spinifera (17% ± 18%), EBS T. inermis (32% ± 16%), and EBS T. raschii (28% ± 21%). 



Figure 6. Summed concentrations of intact lipid classes determined in individual animals across the 

four species of krill evaluated in this study. Polar lipids as phospholipids (largely PC) were the 

dominant lipid class present in most species with significant triglycerides (TAG) also observed in T. 400 

inermis and T. raschii. Values to the right of each bar represent the mass (mg) of each respective krill. 

Other measured lipids include diglycerides (DG), lysophosphatidylcholine (LPC), phosphaitidic acid 

(PA), phosphatidycholine (PC), phosphatidylgycerol (PG), phosphoatidylinositol (PI), 

phosphatidylserine (PS), tryglycerides (TAG), and phosphatidylethanolamine (PE). 

 405 



Lipid composition appeared to be somewhat sensitive to manipulations caused by the acoustic 

experiments (Figure 7). Pristine krill (n = 10; T. inermis n = 6, T. raschii n = 4) had approximately 

equal mean proportions of TAG (45% ± 8%) and PC (44% ± 9%), which differed from their 

manipulated counterparts (TAG = 23% ± 18%, PC = 67% ± 18%). Mean total lipid in pristine animals 

(49.2 ± 26.8 mg g-1, n = 10) was also greater than in manipulated animals (25.2 ± 20.4 mg g-1, n = 18; 410 

W = 32, p < 0.01). One caveat to these observed differences is that pristine krill were not routinely 

collected throughout the cruises, and pristine krill analyzed originated from a single tow separate from 

manipulated krill of the same species. 

 



Figure 7. Comparisons of summed lipid classes in manipulated animals that underwent experimental 415 

acoustic experiments versus pristine animals collected in parallel. Total lipid content varied between 

the two groups with differences in lipid class distributions observed. Pristine krill in particular showed 

elevated amounts of LPC indicative of fatty acid metabolism. 

 

Does lipid content, fluorescence, or length affect krill density? 420 

 

Krill density contrasts were not significantly affected by lipid content or fluorescence. Aside from the 

lipid model where Fint improved the relative goodness-of-fit (RMSE = 0.0040, 0.0043, 0.0043, and 

0.0045 for Fint, Fmldint, Fmld, and Fmax, respectively), all of the fluorescence metrics yielded near-

identical performances. Density contrast decreased with increasing length (n = 520) but was otherwise 425 

independent of TLE (n = 24), mass (n = 124), and fluorescence (n = 313). The linear relationship 

between g and length was very weak across all models (βlength = -7.9E-4 to -4.8E-4) including the 

length-specific model (-6.7E-4 [-8.1E-4, -5.2E-4], β0 = 1.030 [1.026, 1.034], R2
M

 = 0.11, R2
C = 0.50). 

Overall, both species and region explained more of the variation observed in g (R2
C = 0.50 to 0.59) than 

the fixed effects (R2
M = 0.11 to 0.16) across all models.  430 

 

How does in situ orientation of krill vary?  

 

Mean in situ krill orientation, θanimal, was 1° ± 31° (directional mean ± circular standard deviation, n = 

2,700; Figure 8), with 25% of observed krill within ± 5° of broadside incidence. Comparatively, θanimal 435 

was 2° ± 31° using the mean and standard deviation when not assuming a wrapped distribution (i.e., 

fvM). There was a significant difference in distribution of orientations between day- and nighttime 

camera trawls (Two-sample Kolmogorov-Smirnov test, D = 0.144, p < 0.01). Daytime orientations 

were significantly more positive (i.e., head up: 5° ± 39°, n = 400) than at night (i.e., broadside: 0° ± 28, 



n = 2,300; KS-test, D = 0.106, p = 0.02). These observed means were similar to the near-horizontal in 440 

situ orientations of ~10° (Hamner et al., 1983), -9.8° ± 34.1° (Kristensen and Dalen, 1986), 9.7° ± 

59.3° (or 0.0° ± 27.3° when removing krill beyond ± 100°; Lawson et al., 2006), -9 ± 14 to 17° ± 37° 

(Kubilius et al., 2015), -9.8° ± 34.1° and -8.3° ± 39.0° (using a similar stereo camera system as our 

study, although it was equipped with white lights and was only deployed at night; Levine et al., 2018). 

The choice of which statistical distribution to represent in situ orientation had a relatively small effect 445 

where θanimal was 2° ± 31° using the mean and standard deviation when not assuming a circular or 

wrapped distribution (i.e., fvM). Although mean estimates for simulated mean θanimal drawn from N(2°, 

31°) and fvM(1, 4.0) were all statistically similar, the von Mises distribution decreased the standard error 

estimate (SE = 0.244) by a factor of four.   

Figure 8. Most krill (mean: 1 ± 31°, fvM(μ = 1.4, κ = 4.0)) during both day and night were observed 450 

close to horizontal orientations (i.e., parallel to the sea surface). Distributions of krill orientations 

during the day (dashed, n = 400) and night (dotted, n = 2,300) were significantly different (D = 0.144, p 

< 0.01), despite mean orientations being similar between day (5° ± 39°) and night (0° ± 28). 



 

How sensitive are TS models to measured variability of parameter inputs? 455 

 

Precision estimates (i.e., CVSE) for modeled TS based on empirically measured parameter inputs (n = 

10,000) were all small at 38 (2.3%), 70 (2.1%), 120 (2.0%), and 200 kHz (1.9%). These corresponded 

larger integrated uncertainties (i.e., CV) of 230%, 210%, 200%, and 190% where the standard 

deviations approximately doubled mean fbs, which indicated large uncertainties in TS. Comparatively, 460 

the SDWBA reduced CV estimates by 3% and 1% at 120 and 200 kHz, respectively. Conversely,  CV 

estimates at 38 and 70 kHz increased by 13 and 1%, respectively. Sample size intuitively had an effect 

on precision where mean CVSE estimates increased by 89 to 90% and 67 to 68% for only 100 and 1,000 

simulations, respectively, which corresponds to mean modeled TS stabilizing after a few thousand 

simulations. The model was most sensitive to material properties at 110 kHz, while sensitivity to θmodel 465 

monotonically increased (Figure 9).  Body shape also had an effect with respect to the large impulses in 

sensitivity, which both diverged from the sensitivities observed when using both the McGehee et al. 

(1998) and Smith et al. (2013) body shapes. Relative sensitivity in M was largely driven by the 

relationship between h and θmodel, which co-occur through the DWBA model. The ‘simple’ tapered 

shape from Smith et al. (2013) was particularly susceptible to very deep nulls. The absolute variability 470 

(i.e. extent of the 80% confidence intervals) in the relative sensitivity of all parameters increased with 

frequency.  



Figure 9. Frequency-dependent sensitivity to each tested parameter (radius, length, M, and θmodel) using 

scaled gradients calculated via automatic differentiation (colored lines) show that the fbs is uniformly 

sensitive to M across all frequencies until ~ 200 kHz while relative sensitivity to orientation and radius 475 

increases with frequency. Spikes in relative sensitivity at higher frequencies (e.g., 220 kHz) 

corresponded with null frequencies that were particularly affected by small changes in radius, 

orientation, and M. There was relatively strong agreement in median sensitivity among body shapes 

from this study, for generic E. superba (McGehee et al., 1998; gray dotted line), and generic tapered 

cylinder (Smith et al., 2013; black dashed line) for all parameters except at particularly sensitive 480 

regions around 220 and 400 kHz. The 80% (dark shaded) and 95% (lightly shaded) confidence 

intervals expanded with increasing frequency. Vertical dashed lines represent 38, 70, 120, and 200 kHz. 

Each input was parameterized using empirical distributions of length (mm), N(μ=17.9, σ=11.6); 

maximum radius (mm), N(2.2, 1.0); θmodel (radians), N(1.59, 0.55); and M, N(0.097, 0.001).  

 485 

Variability due to M did not contribute to any frequency-dependent effect; however, the M distribution 

was much more constrained than the other parameters. When converted to biomass, the simulated mean 



and standard deviation of M (0.098 ± 0.033, n = 10,000) translates to a 4-fold change in biomass (i.e., 

from M = 0.065 to 0.131). Relative to this study’s overall mean M, estimates reported in the literature 

typically shifted TS by up to a 6 dB, which also translates to approximately a 4-fold change in acoustic 490 

biomass (Table 2) compared to EBS/GOA measurements (Table 3). Large uncertainties can result from 

substantially smaller mean M estimates, which generate abnormally large biomass estimates that can 

skew the resulting distributions such as from Smith et al. (2010).  

 

Table 2. Relative to the M (0.098 ± 0.033) measured in this study based on mean g (1.019 ± 0.010) and 495 

h (1.032 ± 0.015), estimates specific to the eastern Bering Sea (EBS) and Gulf of Alaska (GOA) from 

this study and those reported in the literature from the northwest Atlantic (NWA), northeast Atlantic 

(NEA), northeast Pacific (NEP), and Antarctic (ANT) can generate large changes in TS at 120 kHz. 

Positive and negative factors in the change of biomass indicate an increase or decrease, respectively. 

Values for g and h represent either the mean ± 1 standard deviation or the minimum and maximum 500 

values depending on how material properties were reported for each study. Estimates of M represent the 

mean ± 1 standard deviation based on the simulated distributions using g and h distributions from their 

respective studies. ΔTS indicate the mean ± 1 standard deviation changes relative to the benchmark in 

the first row, which was the mean EBS/GOA M, and directly corresponds to changes in estimated 

biomass (i.e., Biomass Ratio). Comparisons were made based on TS values rounded to the nearest 0.1 505 

dB.  

Location Species g h M 

ΔTS (dB re: 1 m2) 

(120 kHz) 
Biomass Ratio 

EBS/GOA0 

E. pacifica 
T. spinifera 
T. inermis 
T. raschii 

1.019 ± 0.010 1.032 ± 0.015 0.098 ± 0.033 

EBS2 
T. spinifera 
T. inermis 
T. raschii 

1.018 ± 0.009 1.006 ± 0.008 0.055 ± 0.020 -5.9 ± 3.9 3.9x ± 2.5x 

EBS1 
T. spinifera 
T. inermis 

1.018 ± 0.006 1.022 ± 0.018 0.084 ± 0.029 -1.9 ± 3.4 1.6x ± 2.2x 



T. raschii 

ANT4 E. superba 1.024 ± 0.008 1.031 ± 0.008 0.106 ± 0.022 0.5 ± 0.6 -1.1x ± 1.2x 

NWA3 T. raschii 1.013 - 1.018 1.032 - 1.046 0.103 ± 0.008  0.5 ± 1.8 -1.1x ± 1.5x 

GOA1 
E. pacifica 
T. spinifera 
T. inermis 

1.021 ± 0.006 1.037 ± 0.011 0.110 ± 0.022 0.8 ± 1.9 -1.2x ± 1.5x 

ANT5 E. superba 1.036 ± 0.007 1.028 ± 0.002 0.124 ± 0.014 1.9 ± 1.0 -1.5x ± 1.3x 

NEP6 Thysanoessa spp. 1.058 ± 0.009 1.019 ± 0.009 0.151 ± 0.025 3.4 ± 1.4 -2.2x ± 1.4x 

NEA7 
T. inermis 
T. raschii 

1.052 - 1.074 1.026 ± 0.005 0.173 ± 0.016 4.6 ± 0.7 -2.9x ± 1.2x 

0Average of all data in this study; 1Region-specific estimates from this study; 2Smith et al. (2010); 3Greenlaw and Johnson 

(1982); 4Chu and Wiebe (2005); 5Foote (1990); 6Becker and Warren (2014); 7Køgeler et al. (1987). 

 

Table 3. Summary of model parameters distributions measured for each species and region. 510 

Distributions are represented by the mean ± 1 standard deviation. 

 EBS GOA EBS and GOA 

 Length (mm) g h Length (mm) g h θmodel 

T. spinifera 16.5 
± 2.0 

1.018 
± 0.006 

1.022 
± 0.018 

22.3 
± 4.9 

1.021 
± 0.005 

1.037 

± 0.011 

1° 

± 31° 

T. inermis 15.8 
± 2.0 

1.013 
± 0.005 

11.4 
± 1.1 

1.023 
± 0.003 

T. raschii 16.9 
± 2.2 

1.018 
± 0.005 

N/A N/A 

E. pacifica N/A N/A 18.6 
± 2.7 

1.021 
± 0.006 

 

 

Discussion 

 515 

Uncertainty in acoustic-estimates of krill density, abundance, and biomass are generally larger than 

those from traditional sampling methods like net tows (Coyle and Pinchuk, 2002) and can be 

conceptually thought of as the upper limit on uncertainty estimates for abundance and biomass 

extrapolations (Warren and Wiebe, 2008). These uncertainties can further propagate into fishery and 

ecosystem models that rely on acoustic data to provide management recommendations (Hewitt and 520 



Demer, 2000; Ressler et al., 2012). Consequently, improving scattering model output through more 

accurate estimates acoustic properties is crucial for providing more precise interpretations of acoustic 

backscatter data; however, measuring in situ distributions for each model parameter can be non-trivial 

and subject to numerous sampling biases (Simmonds and MacLennan, 2005). Parameter measurements 

for both GOA and EBS krill not only provide updated scattering models for sub-Arctic krill, but also 525 

suggest that using distributions of model parameters rather than single values are necessary for 

generating more robust distributions of TS and evaluating how uncertainty propagates from each 

parameter to acoustic biomass. 

 

Animal morphometry 530 

 

Mean GOA lengths (Figure 3; Table 1) were similar to measurements collected from four surveys 

between 2003 and 2013 (18.9 ± 2.2 mm; Simonsen et al., 2016; Ressler, unpublished data); however, 

these surveys were dominated by T. inermis, T. spinifera, and E. pacifica while material property 

measurements for GOA krill in this study comprised primarily T. spinifera and E. pacifica. Mean EBS 535 

lengths (16.4 ± 2.1 mm) were slightly smaller, but still similar, to those collected from net tows 

between 2004 and 2016 (18.6 ± 2.1 mm) whereby T. raschii and T. inermis dominated in- and offshore 

species compositions, respectively (Smith, 1991; Coyle and Pinchuk, 2002; Ressler et al., 2012, 

unpublished data), although the relative proportion of T. spinifera was higher than previous years. 

 540 

Conversely, krill were approximately two-thirds the length of Antarctic E. superba used in other TS 

modeling studies (e.g., McGehee et al., 1998). Since measurements from McGehee et al. (1998) were 

made on starved individuals, the assumption of a 40% increase in body girth (Demer and Conti, 2003) 

results in a proportionally similar difference between the maximum radius of E. superba and the sub-

Arctic krill used in this study (Figure 4). Moreover, maximum carapace radius and both height in both 545 



EBS and GOA species were similar to those reported in Becker and Warren (2014). Although species-

specific shapes were measured, other factors that could influence shape such as sexual dimorphism 

(Amaksu et al., 2011) and reproductive status (Conti et al., 2005; Forman and Warren, 2009) were not 

directly measured and may account for some of the unexplained variation in the log-linear length-mass 

regressions. 550 

 

Does lipid content, fluorescence, or length affect krill density? 

 

This study found significant but weak linear relationships between g and body length for EBS 

Thysanoessa spp. similar to those reported in Smith et al. (2010) but not with results reported by 555 

Kristensen and Dalen (1986) for Thysanoessa sp. and Chu and Wiebe (2005) for E. superba. When 

scaled to SL1 length, our g-length regressions retain weak negative slopes for the overall sample and 

GOA T. spinifera and E. pacifica. In context of g, these differences result in up to a ~2.6% decrease 

(this study), 1% increase (Chu and Wiebe, 2005), and < 0.1% increase (Kristensen and Dalen, 1986) for 

krill ranging from 10 to 30 mm. Although significant, it is important to interpret these results with 560 

caution due to most of the variability in g being explained by species and region (i.e., R2
C; Figure 5), 

with TLE, length, mass, and fluorescence accounting for very little (i.e., R2
M). Some lipids, such as 

relatively dense phospholipids (Hadley, 1985) and related classes, have been shown in other studies to 

impact overall buoyancy of crustaceans (e.g. Campbell and Dower, 2003), but the lack of relationship 

between g and both chla fluorescence and lipid composition here suggests that other factors may also be 565 

at play (e.g., chlorophyll is not a complete proxy for food availability for these species; Falk-Petersen 

et al., 2000) and requires further investigation. There was a significant difference in TLE and changes 

in lipid class composition between pristine and acoustically measured krill, which may indicate that 

physically handling krill before and/or after death may introduce error into lipid measurements; 

however, sample sizes for each comparison group (i.e., same species from the same year) were 570 



extremely limited and this observation requires further investigation (Figure 7). Future experiments 

should be cautious about how animals are handled during acoustic measurements, preserved, and 

transported since all of these factors can potentially impact comparisons of lipid composition among 

species and relating this to g, or other acoustic properties. 

 575 

Both the overall and region-specific mean h were substantially larger than previous measurements for 

EBS Thysanoessa spp. (Smith et al., 2010), but not northeast Atlantic T. inermis and T. raschii (Køgeler 

et al., 1987) and northeast Pacific T. raschii (Greenlaw and Johnson, 1982). Sound speed contrasts 

were also similar to those reported by Foote (1990) and Chu and Wiebe (2005) for Antarctic E. 

superba, which suggests that h estimates may be more generalizable than g. It is important to note that 580 

h was calculated for each region and not by species because bulk measurements were performed on a 

mix of different species, so EBS and GOA values may not accurately represent inter-animal and -

species variability. 

 

How does in situ orientation of krill vary?  585 

 

In-situ orientation of krill observed in this study show relatively strong agreement with literature 

reported values (most of which are of E. superba; Kils, 1981; Kristensen and Dalen, 1986; Endo, 1993; 

Kubilius et al., 2015; Levine et al., 2018), especially both mean and standard deviations (Figure 8). 

This also helps validate previous assumptions used in other modeling work for Alaskan sub-Arctic krill 590 

(Ressler et al., 2012; Smith et al., 2013). This demonstrates the strength of using optical systems to 

supplement acoustic measurements (Kloser, 2009) by not only providing in situ orientation information 

(e.g., Levine et al., 2018) but also other behaviors such as net size selection and swarming. Some of 

these behaviors can also be inferred based on diel differences in orientation distributions (Kristensen 

and Dalen, 1986; Simard and Sourisseau, 2009), although the difference between day- and nighttime 595 



orientation distributions in this study were not very large. Generally, the assumption used in prior North 

Pacific krill surveys (Ressler et al., 2012) of a mean orientation close to horizontal relative to the sea 

surface and a wide standard deviation is supported, although there was a large proportion of daytime 

orientations around ± 45-60° that was not observed at night. Future daytime stereo camera 

measurements would be necessary to determine whether this distribution is valid for daytime krill 600 

behavior, which could impact how acoustic backscatter data processed between day and night. 

 

The relatively small difference in mean θanimal simulated from von Mises and normal distributions was 

likely due to the relative concentration (κ ≈ 4) around broadside incidence (i.e., θanimal = 0°). This was 

consistent with the normal distributions reported by Lawson et al. (2006), N(μ=9.7°, σ=59.3°), Levine 605 

et al. (2018), N(μ=-8.3°, σ=31°), and their analogous von Mises distributions, fvM(μ=-8.3°, κ=2.8), 

where mean θanimal did not significantly change while variance substantially decreased. Therefore, the 

von Mises distribution provides an alternative approach to simulating θanimal that produces more precise 

estimates that are directly compatible with both the bounds of in situ measurements, [-90°, 90°], and 

converted θmodel, [0°, 180°], for SDWBA parameterization. 610 

 

How sensitive are TS models to measured variability of parameter inputs? 

 

Generally, modeled TS is sensitive to parameter accuracy and variability. For example, TS appears to 

be sensitive to changes in orientation at higher frequencies regardless of body shape (Figure 9) due to 615 

steep decreases in TS as krill orientations moves away from broadside incidence (McGehee et al., 

1998; Smith et al., 2013). The SDWBA provided fairly modest improvements to reducing model bias at 

120 and 200 kHz, which suggests that uncertainty in σts (or TS) was being driven more by some 

combination of the other model inputs. This could also suggest that the SDWBA (i.e., φ) may have 

been insufficiently parameterized and did not adequately mitigate the effect of off-broadside 620 



orientations.. We note that the relatively large CV of simulated TS (~200% at 38, 70, 120, and 200 kHz) 

likely overestimates the expected uncertainty in in situ TS. Larger and more statistically robust 

distributions for length and model inputs would improve uncertainty in in situ TS by reducing the joint 

variability of model inputs. This was supported by the sharp decrease in the relative standard error (i.e., 

CVSE) in modeled TS whereby our simulation demonstrated mean TS converged on the order of 625 

thousands simulations. The combination of both CVSE and CV can help constrain an appropriate mean 

TS and general in situ uncertainty, respectively. For some parameters, sensitivity varied by frequency: 

mean TS at 38 and 70 kHz were nearly twice as sensitive to changes in body length and radius than at 

200 kHz due to a shift where the transition from Rayleigh to geometric scattering occurs. However, 

uncertainty in sensitivity to length, radius, and M increased at frequencies greater than 200 kHz, 630 

resulting in some animals being sensitive to the combination of shape variability and orientation like 

shapes considered in Smith et al. (2013) and McGehee et al. (1998). This divergence could be due to 

differences in the length-to-radius ratio (e.g., 20.0 and 10.4 for the McGehee et al., 1998, and this 

study’s shape, respectively) or other body shape features such as the longitudinal extent of the 

carapace. Conversely, median sensitivity to M was approximately uniform across all frequencies, with 635 

some exceptions such as spikes in sensitivity to M appeared to co-occur with those for orientation. . 

Consequently, it is necessary to account for the relative precision and variability of each parameter at 

given frequencies to better assess model uncertainty.  

 

Relative sensitivity to variability M highlights how error-prone TS estimates can be when M is 640 

parameterized either by using a single value rather than a distribution, or using literature values for 

other non-local species (Table 2). Measured variability in M corresponded to a change in mean TS by 

up to 5.2 dB, or approximately a 3-fold change in biomass. Compared to this study, mean M estimates 

from other sub-Arctic krill measurements values increase TS by up to 4.6 ± 0.7 dB (Køgeler et al., 

1987) or decrease by -5.9 ± 3.9 dB (Smith et al., 2010), which demonstrates that caution should be 645 



applied when using literature values for similar species. Previous Alaskan krill models applied M 

estimates of 0.030, 0.043, and 0.057 for low, medium, and high TS scenarios, respectively (Ressler et 

al., 2012) in biomass estimates for the EBS. These biomass estimates decreased by almost one order of 

magnitude when M = 0.098, which is a higher value driven mainly by a higher h estimate (Table 2).  

 650 

TS Modeling recommendations 

 

Appropriate scattering model parameterization is an important consideration for survey design. It is 

important to draw input parameters from robust distributions that best represent target krill to help 

improve estimates of uncertainty. Some parameters can be obtained at sea from net sampled individuals 655 

(i.e., shape, length) and material properties (Chu and Wiebe, 2005; Smith et al., 2010; Smith et al., 

2013); however, while g can be measured for individuals, h represents bulk measurements of groups of 

animals and may therefore not precisely reflect an individual’s true sound speed contrast. Moreover, in 

situ animal orientation is difficult to measure yet can have a significant effect on TS at frequencies 

typically used in fisheries acoustic surveys. Scattering model sensitivity to other potential variables 660 

such as in situ animal curvature/flexure, heterogeneous material properties, reproductive status, and 

ontogeny, have largely been understudied across all ecosystems and should be investigated further. For 

instance, Amakasu et al. (2011) demonstrated that sexual dimorphism and maturity stage strongly 

influences body shape and should be considered with respect to TS modeling. Regardless, measured 

parameters in this study (Table 3) highlight the importance of using local and region-specific parameter 665 

values whenever possible, cautiously drawing from broader distributions for parameters that may need 

to be generalized and assessing model sensitivity to try and adequately reflect how uncertainty in the 

parameter space propagates to estimates of TS. 

 



While the parameter measurements made in this study inform future Alaska sub-Arctic krill surveys, 670 

both the species- and region-specific distributions can be used to help benchmark general krill TS 

modeling elsewhere and provide a framework for survey design. Correctly accounting for variability in 

TS model parameters in observed krill aggregations is essential to producing accurate survey estimates. 
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